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ABSTRACT Chlamydia trachomatis, an obligately intracellular bacterium, is the most
prevalent cause of bacterial sexually transmitted infections (STIs) worldwide. Numbers of
U.S. infections of the urogenital tract and rectum have increased annually. Because C. tra-
chomatis is not easily cultured, comparative genomic studies are limited, restricting our
understanding of strain diversity and emergence among populations globally. While
Agilent SureSelectXT target enrichment RNA bait libraries have been developed for
whole-genome enrichment and sequencing of C. trachomatis directly from clinical urine,
vaginal, conjunctival, and rectal samples, public access to these libraries is not available.
We therefore designed an RNA bait library (34,795 120-mer probes based on 85
genomes, versus 33,619 probes using 74 genomes in a previous one) to augment orga-
nism sequencing from clinical samples that can be shared with the scientific community,
enabling comparison studies. We describe the library and limit of detection for genome
copy input, and we present results of 100% efficiency and high-resolution determination
of recombination and identical genomes within vaginal-rectal specimen pairs in women.
This workflow provides a robust approach for discerning genomic diversity and advanc-
ing our understanding of the molecular epidemiology of contemporary C. trachomatis
STIs across sample types, geographic populations, sexual networks, and outbreaks associ-
ated with proctitis/proctocolitis among women and men who have sex with men.

IMPORTANCE Chlamydia trachomatis is an obligate intracellular bacterium that is not
easily cultured, which limits our understanding of urogenital and rectal C. trachoma-
tis transmission and impact on morbidity. To provide a publicly available workflow
for whole-genome target enrichment and sequencing of C. trachomatis directly from
clinical urine, vaginal, conjunctival, and rectal specimens, we developed and report
on an RNA bait library to enrich the organism from clinical samples for sequencing.
We demonstrate an increased efficiency in the percentage of reads mapping to C.
trachomatis and identified recombinant and identical C. trachomatis genomes in
paired vaginal-rectal samples from women. Our workflow provides a robust genomic
epidemiologic approach to advance our understanding of C. trachomatis strains
causing ocular, urogenital, and rectal infections and to explore geo-sexual networks,
outbreaks of colorectal infections among women and men who have sex with men,
and the role of these strains in morbidity.

KEYWORDS Chlamydia trachomatis, SNPs, recombination, whole-genome enrichment

C hlamydia trachomatis is the most common cause of bacterial sexually transmitted
infections (STIs) worldwide and the most notifiable disease in the United States (1,
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2). Although C. trachomatis infection can present with conjunctivitis, pharyngitis, ure-
thritis, vaginal discharge, proctitis, or inguinal syndrome, most infections are asymp-
tomatic, which can lead to reproductive morbidity in women and proctitis or proctoco-
litis in women and men who go untreated (2).

C. trachomatis strains are classified by genotype based on the outer membrane pro-
tein gene (ompA), which encodes the major outer membrane protein (MOMP) and is
typically linked to clinical presentation (3). Genotypes are grouped according to dis-
ease association: ocular disease (A to C and Ba), urogenital and anorectal disease (D to
K, Da, Ga, Ia, and Ja), and lymphogranuloma venereum (LGV) (L1 to L3, L2a, L2b, and L2c)
(2, 4–7). Several studies have reported that the prevalence of these genotypes differs
by anatomical site and sexual network. Genotypes D and G are more commonly
detected in the anorectal tract and, along with genotype J, are prevalent in women
and men who have sex with men (MSM) (8–15). Genotypes D, E, and F are found in the
majority of urogenital infections and are common among heterosexuals (8, 16). LGV
genotypes are prevalent in MSM with and without HIV and are associated with an ano-
rectal infection and the inguinal syndrome (17–21).

A 2016 meta-analysis of extragenital C. trachomatis and Neisseria gonorrhoeae infec-
tions in women, MSM, and men who have sex only with women (MSW) demonstrated
median prevalences of 8.7%, 8.9%, and 7.7%, respectively, for rectal C. trachomatis,
with infection often being asymptomatic (22). Further, a number of studies have
shown that rectal infections outnumber those in the urogenital tract of women and
are on the increase among MSM (23–28). Although common, rectal C. trachomatis
transmission and its impact on morbidity are not well understood, likely due to the lack
of routine screening of populations other than MSM (1, 22, 29). In May 2019, the FDA
cleared two diagnostic tests, the Aptima Combo 2 assay (Hologic, Inc.) and the Xpert
CT/NG (Cepheid), for use with extragenital specimens in the detection of C. trachomatis
and N. gonorrhoeae. This recent diagnostic advancement will improve screening and sur-
veillance capacity while offering an opportunity to better understand transmission of
rectal C. trachomatis and its role in morbidity.

Transmission and molecular epidemiologic studies of C. trachomatis rely on ompA
genotyping, multilocus sequence typing (MLST), and multilocus variable-number tan-
dem-repeat analysis (MLVA) (10, 30–39). Unfortunately, these techniques are challeng-
ing and laborious when performed on clinical specimens and, except for ompA geno-
typing, often require tissue culture to generate sufficient DNA. Further, due to low
genetic resolution, these methods fail to demonstrate precise inter- and intrastrain
recombination events across the genome that contribute to strain diversity (40–44).
Recombination has been important in creating emerging strains of C. trachomatis,
such as L2b, among MSM in many countries of the world and recombinant strains L2/D
(termed L2c) and L2b/D-Da in the United States and Portugal, respectively (28, 40–47).

Enrichment of the low copy number of C. trachomatis in clinical specimens presents
the greatest challenge for culture-independent genome sequencing (48). Initially, this
method employed immunomagnetic separation (IMS) for enrichment, followed by ge-
nome amplification using multiple displacement amplification (MDA), but the demon-
strated success rate (15 to 30%) was low across clinical specimens (49–51). Other meth-
ods currently in use include depletion-enrichment, cell sorting-MDA, and multiplexed
microdroplet PCR (48). In 2014, Christiansen et al. sequenced C. trachomatis from urine
and vaginal swabs with an 80% (8/10) success rate ($95 to 100% coverage of the re-
spective reference genome) using custom RNA baits to enrich for C. trachomatis during
library preparation (52). The same RNA bait library was subsequently used for conjunc-
tival samples with a 60% (12/20) success rate and similar genome coverage. More
recently, another Agilent custom RNA bait library was developed for C. trachomatis
enrichment from rectal samples (47). This RNA bait method has therefore been used to
understand genomic diversity in circulating C. trachomatis ocular, urogenital, and LGV
lineages from clinical specimens but with varying success (47, 53–56).

In an effort to make direct sequencing of all C. trachomatis strains causing clinical
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infections more efficient and publicly available, we designed an RNA bait library based
on 85 C. trachomatis complete genomes with 34,795 120-mer probes, compared to 74
genomes with 33,619 120-mer probes as for previous bait libraries (48, 52) and opti-
mized the experimental protocol. We used paired vaginal and rectal specimens from
four women as a novel comparator but also because the latter sample types have
become more clinically relevant due to increased numbers of these infections among
heterosexual women (23–28). The new system will increase our ability to sequence C.
trachomatis genomes of current circulating strains causing ocular, urogenital, and rec-
tal infections in diverse populations, providing a more robust data set to understand
current sexual networks and transmission within and among anatomic sites. From
these data, we will be able to differentiate clusters and sporadic cases during out-
breaks and potentially identify novel markers for typing C. trachomatis, in addition to
exploring the role of these strains in ocular, genital, and colorectal morbidity.

RESULTS
Limit of detection. The limit of detection (LOD) was determined using various

genomic copy numbers of a C. trachomatis ompA genotype D strain mapped to the D
reference strain. Genomic libraries were prepared, enriched for C. trachomatis, and
sequenced from spiked serial dilutions of genomic DNA (gDNA) bulked with human
DNA for a total input of 3mg DNA (for fragmentation and library preparation) using
the expanded RNA bait library and Agilent SureSelectXT protocol. Total C. trachomatis
genome copy input ranged from 265 to 7,854,406 copies, which is similar to the range
for genome copies from clinical samples (see below), with 1.33 to 99.28% of the qual-
ity-controlled reads binned as Chlamydia species, along with a mean mapping read
depth to the C. trachomatis reference genome ranging from 0.57 to 562.67, respec-
tively (Table 1; Fig. 1; also, see Fig. S1 in the supplemental material). With the quality
control (QC) criteria for efficiency set at $98% genome coverage at a $5� read depth,
genotype D had an LOD of 16,945 total genome copies (Table 1; Fig. 1).

Enrichment and genomic sequencing of C. trachomatis from genotype L2b and
patient specimen sets. To ensure efficiency of target enrichment from a C. trachomatis
ompA genotype prevalent in anorectal infections in HIV-infected MSM, genomic libra-
ries from spiked mock samples of genotype L2b were prepared, enriched for C. tracho-
matis, and sequenced. Total C. trachomatis genome copy input ranged from 9,000 to
900,000 copies, with 97.22 to 98.77% of the quality-controlled reads binned as
Chlamydia species along with a mean mapping read depth to the C. trachomatis refer-
ence genome ranging from 531.81 to 550.78, respectively (Table 2; Fig. S2).

To determine efficiency of target enrichment from vaginal and rectal clinical speci-
mens, C. trachomatis was directly sequenced from 4 sets of patient-matched vaginal
and rectal swabs. The ranges of copy numbers by qPCR were 328 to 2,218 genomes
per ml for the vaginal samples and 1,664 to 43,905 genomes per ml for the rectal sam-
ples. Total input ranged from 20,764 to 3,336,780 C. trachomatis genome copies. More
genome copies were present in the rectal swab than in the vaginal swabs in 3 of the 4
patient specimen sets (Table 2). As with the spiked gDNA serial dilutions, the propor-
tion of reads classified as Chlamydia spp. from clinical samples was dependent on total
genome copy input (Table 2; Fig. 2).

For three of the four patient specimen sets (sets 107, 192, and 98), 18.07%, 30.82%,
and 17.13% more reads were classified, respectively, as Chlamydia spp. in the rectal
swab than the respective vaginal swab (Table 2; Fig. 2). Interestingly, for patient speci-
men set 72, there were 32.94% more Chlamydia reads in the vaginal swab, which con-
tained 68,201 more genome copies than the rectal swab (Table 2; Fig. 2). Mean read
depth was on average 3.5-fold higher in rectal swabs from patient specimen sets 107,
192, and 98, while patient specimen set 72 demonstrated a 3.3-fold-higher mean read
depth in the vaginal swab (Table 2; Fig. S2). For all patient specimen sets, the percent-
age of the C. trachomatis genome covered with at least 5� coverage was .98%, with
the exception of 72R, which had only 96.11% of the genome covered at a minimum of
5� read depth.
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Phylogeny and single nucleotide polymorphisms among patient specimens. To
ensure that genomes generated from the four patient specimen sets clustered to any
of the four deep-branching monophyletic C. trachomatis lineages, a whole-genome
phylogenetic analysis was constructed with 94 C. trachomatis single-contig genome
sequences that were available from GenBank in December 2019 (Table S2) (40, 42, 54).
Both the genomes from patient specimen sets 107 and 192 clustered within the “prev-
alent urogenital and rectal strain” clade, while patient specimen sets 98 and 72 clus-
tered within the “nonprevalent urogenital and rectal strain” clade (Fig. 3).

Patient genomes 107 and 192 clustered in the same clade as the E genotype
genomes (prevalent urogenital and anorectal lineage), whereas patient genomes 98
and 72 clustered in the same clade as G ompA genotypes (nonprevalent urogenital
and anorectal lineage) (Fig. 3). For all four patients, the genomes derived from the two
body sites formed distinct monophyletic clades within their respective urogenital line-
age with a mean difference of 3 single nucleotide polymorphisms (SNPs) (1 to 5 SNPs),
indicating that each patient likely carried the same strain within her rectum and vagina
(Fig. 3; Table 3). Interestingly, five within-host SNPs were identified in patient 72, and 2
of these SNPs were within the highly recombinogenic ompA (2 SNPs) and pmpF (2
SNPs) genes. Genomic comparison of all the plasmids against all reference plasmid
sequences showed that there was 100% sequence similarity within each patient speci-
men set (e.g., sample sets 107 and 192 had E plasmids in both anatomic sites) with the
exception that the vaginal plasmid from patient 192 had a single nucleotide deletion
at nucleotide position 5241 compared to the rectal plasmid. This deletion was within a
gene that encodes a hypothetical protein. No other indels or SNPs were noted in any
of the plasmids.

Detection of recombination events from genomes derived from patient
specimens. Patient specimen sets harbored a total of 14 putative recombination
blocks that contained between 21 and 419 homoplasic SNPs thought to have been
introduced via homologous recombination. The number of putative recombination
blocks varied between 1 and 6 within a patient specimen set, covering an average
12.2-kb region per specimen (Table S3). All the putative recombination blocks identi-
fied and described were shared within and detected only in each of the patient speci-
men sets, indicating that these recombination events were ancestral and acquired
through clonal descent. Among the patient specimen sets, 107R and 107V (urogenital
prevalent lineage) had the highest rates of recombination (r /u = 0.111) as well as
increased effects of recombination over point mutations (r/m=5.777) followed by
patient specimen sets 72R and 72V (urogenital nonprevalent lineage; r /u = 0.053;
r/m=3.803). The lowest number of recombination events were observed among the

FIG 1 LOD of genome copies using the SureSelectXT target enrichment workflow for spiked serial
dilutions of reference strain D/UW-3/Cx gDNA. The data are the percent coverage of the reference
genome for each serial dilution.
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98V and 98R patient specimen sets (nonprevalent lineage; r /u = 0.031; r/m= 0.6562)
(Table S3).

Some of the previously identified genomic regions of higher homologous recombi-
nation were also identified in this study. The ompA gene has undergone recombination
in both prevalent urogenital patient specimen sets 107 and 192. ompA genotyping by
both Sanger sequencing and whole-genome data indicated that the ompA genotype
of specimens from patients 107 and 192 was Ja within an E genome backbone. Our
recombination detection analysis showed that homologous recombination might have
mediated the transfer of an ;12.9-kbp fragment containing CT_681/ompA along with
the neighboring genes (from type III secretion system protein gene [CT_672] to pbpB
[CT_682]) into patient 192 and a larger fragment of 17.6 kbp from CT_672 to pbpB
(CT_682) along with ompA into patient 107, likely from a Ja strain (Fig. 3; Table S3). The
pmpE and mrsA_1 genes were estimated to be recombinant, respectively, in sets 107
and 192 (40, 54). The inclusion membrane protein gene incD was predicted to be
recombinant only in the nonprevalent urogenital patient specimen set 98. (Table S3)
(40, 54).

DISCUSSION

A SureSelectXT workflow with a 2.698 Mbp RNA bait library with 34,795 120-mer
probes was developed from 85 GenBank C. trachomatis reference genomes encom-
passing all four lineages of C. trachomatis, compared to the previous RNA bait library
developed from 74 GenBank C. trachomatis reference genomes with 33,619 120-mer
probes (52). By including more C. trachomatis reference genomes in our bait library
design, which generated 1,0001 more probes, we likely captured more genetic diver-
sity of the C. trachomatis strains circulating in the population than the RNA baits gener-
ated previously by Christiansen et al. (52). Moreover, having .98% of the C. trachoma-
tis reference genome covered with at least 10 reads per nucleotide position for clinical
specimens (with an exception for specimen 72R) indicates that the probes were uni-
formly covered along the C. trachomatis genome. Compared to a previous study that
obtained 98% coverage with a total input of 4,800 C. trachomatis strain F/SW4 genome

FIG 2 Percent coverage of reference genome and reads mapping to the respective reference genome for
spiked mock samples of genotype L2b and patient specimen sets. The percent coverage of the reference
genome for each patient specimen is represented by bars, with bar coloring based on average mean read
depth as indicated. R, rectal sample; V, vaginal sample. The orange line represents the percent down-selected
Chlamydia spp. and C. trachomatis read pairs.
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copies (52), we report an LOD of around 16,000 total genomes at 98% coverage for C.
trachomatis reference strain D/UW-3/Cx. This LOD was within the same order of magni-
tude as that in the previous study, although we utilized an expanded RNA bait library,
a different assay to determine copy number (i.e., quantitative real-time PCR [qRT-PCR]
versus qPCR), and gDNA from a spiked sample versus a sample that had been propa-
gated in tissue culture.

Here, it was useful to calculate comparable mean read depths and the number of
down-selected read pairs among the spiked samples of L2b, as this demonstrates suc-
cess in enrichment for LGV strains, which have become prevalent among MSM and
MSW (23, 25, 27, 28). Phylogenetic analysis of the 94 reference genomes (of which 85
genomes were used to develop the RNA bait library) showed genome representation
from all four C. trachomatis lineages (Fig. 3). Overall, this workflow was successful in
enrichment and sequencing of C. trachomatis strains that are prevalent in anorectal
infections from two different populations: the MSM population, from which L2b origi-
nated, and the female heterosexual population, from which the paired vaginal and rec-
tal samples originated.

Sequence data analysis of patient specimen vaginal and rectal swabs sets revealed
successful enrichment and genome sequencing of C. trachomatis from both clinical
specimen types. In three of the four patient specimen sets, sequencing was more effi-
cient for the rectal swabs, likely due to the higher genome copy number of C. tracho-
matis for those specimen sets. With a total input of 3,336,780 C. trachomatis genome
copies, rectal specimen 192 demonstrated the best enrichment, with 89% nonhuman

FIG 3 Global phylogeny of patient specimen sets and 94 C. trachomatis complete genomes. The four major lineages of C. trachomatis are highlighted with
circular tip shapes in four distinct colors. The associated ompA genotypes for each genome derived from the whole-genome data are also shown with the
color code on the right. Patient specimen sets are highlighted in yellow.
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reads, of which 66.07% belonged to Chlamydia species that mapped to 98.92% of the
C. trachomatis reference E strain genome with at least 10 reads per nucleotide position
and with a mean read depth coverage of 313.09. This is an improvement over a previ-
ous study that subjected clinical urine and vaginal samples to the prior Agilent bait
library, where the best sample had 49.57% of the reads belonging to Chlamydia spe-
cies, with 99.9% mapping to the reference D genome at a mean read depth of 410
from a total input of 68,864,400 C. trachomatis genome copies (52). Unfortunately, the
number of reads mapped per nucleotide position to achieve the 99.9% coverage was
not provided. Overall, enrichment of C. trachomatis from the samples in that study was
successful in only eight (80%) of 10 samples, for a genome coverage of $95 to 100%
for the respective reference genome; the percentage of reads mapping to C. trachoma-
tis ranged from 0.07 to 49.57% across the specimens, possibly due to hybridization
of the RNA bait library primers with human DNA. Without a reporting of the number of
reads mapped per reference nucleotide position to achieve the genome coverage of
$95 to 100%, we cannot make a direct comparison of the efficiencies of the bait library
in this study compared to the previous C. trachomatis bait library.

In another study using the prior Agilent bait library, only 12 (60%) of 20 clinical ocu-
lar samples reached $95 to 100% genome coverage (55), again without reads mapped
per reference nucleotide position. In our study, all eight (100%) clinical samples
reached $95 to 100% genome coverage, with reads mapping to C. trachomatis rang-
ing from 3.71 to 98.77%, indicating that this probe library—which further excludes
baits with human homology—can achieve the desired efficiency.

The higher C. trachomatis bacterial load detected in rectal specimens in three of the
four patient specimen sets conflicts with two studies that demonstrated similar loads
across sets of vaginal and anorectal specimens collected from the same women with
and without anal intercourse visiting an STI clinic in the Netherlands and in a high-HIV-
prevalence area in South Africa (57, 58). For our study, the trend may be a characteristic
of the assay used to determine copy number or the study population itself or, because
of the small sample size, may not be representative of the study population as a whole.
Nevertheless, Dirks et al. (59) pointed out the ineffectiveness of comparing load across
C. trachomatis surveillance studies due to the lack of standardization for load determi-
nation and the presence of inflammatory cells which can artificially lower the number
of C. trachomatis load. However, it is useful to determine the bacterial load in patient
specimens to ensure that enough gDNA is present to successfully enrich for C. tracho-
matis in a target enrichment sequencing workflow, although conclusions should not
be drawn from this estimated value about severity of infection, associated symptoms,
or transmission.

TABLE 3 SNPs detected within patient specimen sets

Patient specimen seta Gene containing within-host SNPs
No. of
SNPs

Genome location(s) (SNP
and nucleotide coverage for
each variant)

Reference genome used for
calling the SNPsb

107R and 107V Gene for hypothetical protein (FSW4_RS00260) 1 54906 (C!T; T:62, C:1) F/SW4 (NC_017951.1)
Gene for hypothetical protein (FSW4_RS00270) 2 59520 (T!C; C:33, T:0), 59523

(C!T; T:33, C:0)
F/SW4 (NC_017951.1)

Intergenic region 1 79002 (G!A; A:77, G:0) F/SW4 (NC_017951.1)
Gene for amino acid ABC transporter ATP-binding
protein

1 146249 (C!T; T:145, C:0) F/SW4 (NC_017951.1)

Intergenic region 1 437237 (T!C; C:36, T:0) F/SW4 (NC_017951.1)
192R and 192V Gene for PTS sugar transporter subunit IIA 1 326567 (G!A; A:75, G:5) F/SW4 (NC_017951.1)
72R and 72V ompA 2 779230 (G!A; A:33, G:1),

779235 (C!A; A:31, G:2)
D/UW-3/CX (NC_000117.1)

Gene for hypothetical protein (CT_744) 1 864903 (T!C; C:50, T!0) D/UW-3/CX (NC_000117.1)
pmpF 2 1029641 (G!T; T:75, G:0),

1029643 (A!G; G:75, A:0)
D/UW-3/CX (NC_000117.1)

98R and 98V Gene for hypothetical protein (CT_049) 1 54281 (C!T; T:23, C:0) D/UW-3/CX (NC_000117.1)
aR, rectal; V, vaginal.
bSNPs were called by comparing the genomes of patient specimen sets to reference genomes that clustered in the whole-genome phylogenetic tree.
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Genomes derived from each patient specimen set were located phylogenetically
within the representative lineages of their respective strain genotype as determined by
Sanger sequencing, demonstrating success of the workflow and bioinformatic analysis
described here. Although overall genome coverage was determined using conserva-
tive read depths (5� and 10�), a small number of SNPs were identified within patient
sample sets at a range of 23 to 145� coverage, demonstrating low genome diversity
within a single patient with a low probability of false positives and negatives.
Interestingly, patient specimen sets 107 and 192 were associated with the prevalent
strain lineage, a recent urogenital lineage that has been suggested to have been
derived from recombination (40, 54). Further, the detection of recombination involving
ompA, a known hot spot for recombination in the C. trachomatis genome, in these
samples as part of an approximately 12-kb exchange event, in addition to four and five
other recombination blocks, respectively, could be identified only by whole-genome
sequencing (WGS) and not by Sanger sequencing alone or with traditional molecular
typing methods such as ompA genotyping, MLST, or MLVA (40, 43, 54). In contrast,
patient specimen sets 72 and 98 had three and one recombination blocks, respectively.
These data highlight the genetic resolution achieved by our workflow. Indeed, the cir-
culation of two different C. trachomatis lineages with various degrees of recombination
across the genomes in a single population is of interest and displays the complexity of
C. trachomatis strain evolution and transmission. Furthermore, the novel finding that
vaginal and rectal pairs have the same genomes suggests within-host transmission,
indicating the need for larger studies to further explore this possibility.

Here, we describe a higher-efficiency target enrichment bait library and a workflow
that streamlines the molecular characterization of C. trachomatis from rectal as well as
vaginal specimens. This type of high-resolution data can be used to understand the
genetic diversity of current C. trachomatis strains causing genital and rectal infections
and provide a robust molecular epidemiologic approach to advance our understand-
ing of geo-sexual networks, outbreaks of colorectal infections among women and men
who have sex with men, and the role of these strains in morbidity. The bioinformatic
pipeline can further be used to potentially identify novel markers for typing C. tracho-
matis and to examine the microbiome to determine the role it plays in susceptibility,
transmission and clearance of urogenital and rectal C. trachomatis infections, especially
given the need for a longer duration of therapy for rectal infections than for most
uncomplicated urogenital infections (60, 61). Finally, the bait library is publicly avail-
able, which will support comparative genome studies going forward.

MATERIALS ANDMETHODS
Spiked serial dilutions of C. trachomatis reference strain D/UW-3/Cx. Genomic DNA (gDNA) from

C. trachomatis reference strain genotype D/UW-3/Cx (ATCC VR-885D) was used to determine the limit of
detection (LOD) for this workflow. The LOD was set at the minimal genome copy number required to
generate a $5� read depth with $98% genome coverage compared to the reference strain of the same
ompA genotype. Six 100-ml serial dilutions (1021 to 1026) were prepared by spiking into 1� phosphate-
buffered saline (PBS). A standard curve based on ATCC’s reported copy number for genotype L2b (ATTC
VR-902BD) was generated using real-time PCR (RT-PCR) targeting the C. trachomatis single-copy poly-
morphic membrane protein gene pmpH (62). This standard curve (y= 1� 10e(20.602x); R2 = 0.987) was
then used to calculate a more precise genome copy number for each serial dilution of genotype D.

Spiked mock samples of C. trachomatis genotype L2b. gDNA from C. trachomatis clinical strain ge-
notype L2b (ATCC VR-902BD) was used to ensure success of this workflow with a C. trachomatis strain
prevalent in anorectal infections in HIV-infected MSM. Three 100-ml serial dilutions (9,000 to 900,000
total genome copies) were prepared by spiking into 1� PBS, all within the LOD established using C. tra-
chomatis reference strain genotype D.

C. trachomatis clinical specimens and determination of C. trachomatis genome copy number.
Clinical urogenital and rectal samples were obtained from women aged 18 to 40 years who were at high
risk for STIs after giving informed consent as part of a separate study that was approved by the institu-
tional review board of UCSF Benioff Children’s Hospital Oakland Research Institute. For this study, the
samples were stripped of all personal identifiers with no trace to the patient names. FLOQswab vaginal
and rectal swabs (Copan, Murrieta, CA) had been collected using standard techniques by trained clinic
staff and screened for C. trachomatis using the Xpert CT/NG test (Cepheid, Sunnyvale, CA). Four clinical
vaginal samples and the four paired rectal swabs from the same four women (randomly selected using a
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table of random numbers from over 200 women positive for C. trachomatis at both sites) were used in
this study.

Approximately 200 ml of remnant swab collection buffer that had not been run in the Xpert test was
lysed with 59 ml of a cocktail consisting of 50 ml lysozyme (10mg/ml; MilliporeSigma, St. Louis, MO), 3ml
of lysostaphin (4,000 U/ml in sodium acetate; MilliporeSigma), and 6ml of mutanolysin (25,000 U/ml;
MilliporeSigma) for 1 h at 37°C as described elsewhere (63). gDNA was then purified from the lysate
using the QIAamp DNA minikit (Qiagen) according to the manufacturer’s instructions. For rectal swabs
collected in M4 medium (Thermo Fisher, South San Francisco, CA), 200 ml was treated as described
above.

gDNA was subjected to an in-house qPCR to quantitate the genomic copy number of C. trachomatis
as we described previously (64). Briefly, a standard curve was calculated based on 10-fold serial dilutions
of a linearized plasmid containing the single-copy ompA gene. C. trachomatis genomic copy number of
the clinical samples was determined based on the standard curve.

C. trachomatis ompA genotyping and plasmid sequencing. ompA genotyping was performed as
previously described (65). Briefly, primers flanking the ompA gene were used for PCR. The PCR product
was purified by exoSAP-IT (Thermo Fisher) and subjected to Sanger sequencing using the PCR primers
(65). Forward and reverse sequences were aligned using MAFFT v7.450 (66) to create a consensus
sequence that was aligned to all reference ompA genotypes. The reference strains included A/HAR-13,
B/TW-5/OT, Ba/Apache-2, C/TW-3/OT, D/UW-3/Cx, Da/TW-448, E/Bour, F/IC-Cal-13, G/UW-57/Cx, H/UW-4/
Cx, I/UW-12/Ur, Ia/UW-202, J/UW-36/Cx, Ja/UW-92, K/UW-31/Cx, L1/440, L2/434, L2a/UW-396, L2b/UCH-1/
proctitis, L2c, and L3/404.

Five overlapping PCR primer pairs were designed using the IDT PrimerQuest tool (https://www
.idtdna.com/pages/tools/primerquest) to amplify the entire plasmid (Table S1). The thermocycling pa-
rameters were 3min at 95°C followed by 40 cycles of 95°C for 30 s, 56°C for 30 s, and 72°C for 1min 10 s
with a final incubation at 72°C for 7min. The PCR product was purified and sequenced as described
above, and the consensus sequence was aligned to all reference plasmid sequences as described above
using MAFFT v7.450.

Quantification and fragmentation. Samples were quantified using a Qubit 2.0 fluorometer, and
human gDNA (Promega, San Luis Obispo, CA) was added to reach a total input of 3mg/130ml for frag-
mentation and library prep. Samples were sheared on a Covaris LE220-plus instrument using the 8
microTUBE strip V1 (PN 520053; Covaris, Woburn, MA) with the base pair mode set to 250 to 300 bp fol-
lowing the manufacturer’s instructions.

RNA bait library design. A 2.698 Mbp RNA bait library consisting of 34,795 120-mer probes span-
ning 85 GenBank C. trachomatis reference genomes was designed using Agilent SureDesign. No plasmid
probes were included in the RNA bait library construction. The bait library was synthesized by Agilent
Technologies. Although Agilent Technologies prevents publication of the probe sequences for the RNA
bait libraries they design, the custom-designed RNA bait library (ELID 3173001) used in this study can be
retrieved by contacting Agilent Technologies, Inc. (Santa Clara, CA). The sequences for the bait library
developed by Christiansen et al. (52) and the bait library itself are not publicly available, resulting in the
inability to compare it with the RNA bait library designed in this study. Sequencing of the RNA bait
library itself was not necessary, as Agilent provided the probe sequences, which were analyzed using
BLAST to determine that they represented all C. trachomatis genovars.

Library prep. After shearing, the SureSelectXT target enrichment system for Illumina paired-end mul-
tiplexed sequencing library (VC2; December 2018) and all recommended quality control steps were per-
formed on all gDNA samples. A 16-h incubation at 65°C was performed for RNA bait library hybridiza-
tion. Postcapture PCR cycling was set at 12 cycles based on a capture library size of .1.5Mb.

Illumina MiSeq sequencing. The eight clinical samples were multiplexed for two runs of paired end
sequencing on an Illumina MiSeq instrument using a 300-bp v2 reagent kit. For the final multiplexed
library pool, libraries were diluted to 2 nM/3 ml in low-EDTA Tris-EDTA buffer (TE) for a final concentra-
tion of 10 pM; 12.5 pM PhiX was added to the final pool that was loaded onto the MiSeq sequencer.

Sequence and phylogenetics analysis. Host genome sequences were first filtered from the raw
sequencing data set using Bowtie2 version 2.2.9 (67), which removed any contaminating human sequen-
ces using the h19 human reference genome (68). Cutadapt version 1.8.3 (69) was used to trim specified
primers and adapters and to filter out reads below Phred quality scores of 15 and read length below 50
bp. Deduplication of the reads was performed using Clumpify (sourceforge.net/projects/bbmap/) with
the dedupe=t option to prevent biased coverage of genomic regions. C. trachomatis sequencing reads
were selected using K-SLAM (70), a k-mer-based metagenomics taxonomic profiler, which used a data-
base containing all bacterial and archaeal reference nucleotide sequences. The presence of C. trachoma-
tis sequences was also confirmed using Metaphlan2 (71). We generated a custom version of the C. tra-
chomatis D/UW-3/CX reference sequence (NC_000117.1) from which we masked 6 rRNA genes, CT_r01
(16SrRNA_1), CT_r02 (23SrRNA_1), CT_r03 (5SrRNA_1), CT_r04 (16SrRNA_2), CT_r05 (23SrRNA_2), and
CT_r06 (5SrRNA_2), present in the repeated rRNA operons using the bedtools v2.17.0 (72) tool “mask-
fasta.” Prefiltered chlamydial reads were mapped against this custom reference genome using BWA
mem v2.12.0 (73) (MapQ$ 20), followed by consensus sequence generation and estimation of sequenc-
ing depth and mapping statistics using SAMtools (74) (options “depth” and “mpileup”) and bcftools
v1.9. The prefiltered C. trachomatis sequencing reads were also used to generate de novo short-read
assemblies using SPAdes 3.7.0 (75) with the “careful” option. To genotype the patient samples, de novo
contigs were used to extract and compare the ompA genes against a customized BLAST (76) database of
the 21 reference ompA sequences (see above). The equation used to calculate mean read depth was:
(number of mapped reads � average bp read length)/(bp length of CT reference genome).
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For phylogenetic analysis, apart from the patient genome sequences (n= 8), we also included all C.
trachomatis genomes (without plasmid sequences) available in NCBI (n=94) and used a reference map-
ping approach with the above-mentioned custom version of the C. trachomatis D/UW-3/CX reference
genome sequence. In short, full-length whole-genome alignments were generated using Snippy v3.1
(https://github.com/tseemann/snippy), which identifies variants using Freebayes v1.0.2 (77) with a mini-
mum 10� read coverage and 90% read concordance at a locus for each SNP. Regions of increased den-
sity of homoplasious SNPs introduced by possible recombination events were predicted iteratively and
masked using Gubbins (78). The final phylogenetic tree was reconstructed using RaxML (79) on the
recombination removed alignment using the general time-reversible (GTR) model. The genes
located within the putative recombination blocks for the patient samples were identified by com-
paring the alignment genomic coordinates for the predicted recombination blocks to the gene
annotations of the reference genome. Within-host SNP differences were derived from the alignment
before masking the predicted recombination events.

Data availability. All sequencing data associated with this study were submitted to the National
Center for Biotechnology Information’s sequence read archive (SRA) under the BioProject accession ID
PRJNA609714.
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